Fluid flow properties of the Wilhelmøya Subgroup, a potential unconventional CO₂ storage unit in central Spitsbergen

Mark Joseph Mulrooney¹,², Leif Larsen³, Jeroen Van Stappen⁴, Bjarte Rismyhr¹,⁵, Kim Senger¹, Alvar Braathen², Snorre Olaussen¹, Mai Britt E. Mørk⁶, Kei Ogata⁷ & Veerle Cnudde⁴

¹Department of Arctic Geology, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway.
²Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway.
³Department of Petroleum Engineering, University in Stavanger, P.O. Box 8600, Forus, 4036 Stavanger, Norway.
⁴Department of Geology, ProGRess-UGCT, Ghent University, Krijgslaan 281/S8, B–9000, Belgium
⁵Department of Earth Science, University of Bergen, P.O. Box 7803, N–5020 Bergen, Norway.
⁶Department of Geoscience and Petroleum, Norwegian University of Science and Technology, N–7491 Trondheim, Norway.
⁷Faculty of Earth and Life Sciences, Geology and Geochemistry cluster, VU Amsterdam, De Boelelaan 1085–1087, 1081 HV Amsterdam, Netherlands.

E-mail corresponding author (Mark Joseph Mulrooney): mark.mulrooney@geo.uio.no

The Upper Triassic to Middle Jurassic Wilhelmøya Subgroup forms one of the more suitable reservoir units on the Norwegian Arctic archipelago of Svalbard. The target siliciclastic storage unit, which is encountered at approx. 670 m depth at the potential injection site in Adventdalen, central Spitsbergen, is a severely under-pressured (at least 35 bar), tight and compartmentalised reservoir with significant contribution of natural fractures to permeability. In this contribution, we characterise the 15–24 m-thick Wilhelmøya Subgroup storage unit using both borehole and outcrop data and present water-injection test results that indicate the presence of fluid-flow barriers and the generation of new, and propagation of pre-existing natural fractures during injection. Whole core samples from drillcores and outcrops were sampled for pore network characterisation and analysed using high-resolution X-ray computed tomography (Micro-CT). We demonstrate that heterogeneities such as structural discontinuities, igneous bodies and lateral facies variations, as examined in well core and equivalent outcrops, will strongly influence fluid flow in the target reservoir, both by steering and baffling fluid migration. Many of these heterogeneities are considered to be subseismic, and their detailed characterisation is important to predict subsurface CO₂ storage potential and optimise injection strategy.

Keywords: CCS, reservoir compartmentalisation, Spitsbergen

Received 10. October 2017 / Accepted 23. July 2018 / Published online 1. November 2018

Introduction

Longyearbyen is a small isolated community situated on the Arctic archipelago of Svalbard at 78° north (Fig. 1). The Longyearbyen CO₂ Lab was established in 2007 by the University Centre in Svalbard (UNIS) as a pilot-scale, onshore carbon capture and storage (CCS) study. The project aim was to assess the feasibility of capturing CO₂ emitted by the local, coal-fuelled power plant (approx. 60,000 tons of CO₂ emitted annually) and storing it in a saline aquifer underground.

Increase in anthropogenic emission of CO₂ into the Earth’s atmosphere since the industrial revolution and its contribution to global climate change is unequivocal...
The ‘450 Scenario’, aims for stabilisation of global atmospheric CO₂ at 450 ppm (the Copenhagen Accord). Carbon capture and storage (CCS) offers one such method of emission reduction (contributing up to 19%; Birol, 2010) where carbon is captured at point sources (e.g., coal-fuelled power plants), transported to suitable injection sites (e.g., by pipelines, ships or trucks) and injected into suitable subsurface storage formations, e.g., saline aquifers and depleted hydrocarbon fields (IPCC, 2005; Bachu, 2008; Benson & Cole, 2008).

The technology for injecting CO₂ into the subsurface is reasonably well understood and has been employed by the hydrocarbon industry since the 1980s for increasing oil recovery (Beliveau et al., 1993). CCS was tested and applied globally in a variety of geological and top-side settings within the past decade, with a varying degree of success. The technical feasibility of CCS is currently best illustrated by a handful of industrial-scale projects that have operated in recent years, e.g., Sleipner (Eiken et al., 2011), In Salah (Vasco et al., 2008), and the Weyburn field (White et al., 2004; Whittaker et al., 2004). Furthermore, pilot-scale projects in Japan (Xue et al., 2006), Ketzin in Germany (Förster et al., 2006), the Frio project in Texas (Daley et al., 2008; Doughty et al., 2008) and CarbFix in Iceland (Aradóttir et al., 2011) all confirm the feasibility of the storage part of CCS under various subsurface and top-side conditions.

The primary focuses of the Longyearbyen CO₂ Lab (Braathen et al., 2012) have been identification and
appraisal of potential reservoir and caprock units. The best reservoir units have been identified as the uppermost part of the Carnian to Norian De Geerdalen Formation (Ipsforden Member) and the Norian to Bathonian Wilhelmsøya Subgroup, which are encountered at 672 to 970 metres depth at the potential injection site in Adventdalen (drill site 2; Fig. 2), 5 km southeast of the Longyearbyen power plant. The Wilhelmsøya Subgroup has the best porosity and permeability but well tests confirm the presence of baffles to fluid flow (discussed herein).

The overlying shale- and claystone-dominated, late Bathonian to Hauterivian Agardhfjellet and Rurikfjellet formations were identified as a suitable caprock interval. The presence of a 100–150 m-thick permafrost zone at the drill site (Humlum et al., 2003; Johansen et al., 2003) is also expected to contribute locally as a complementary seal. The potential reservoir and caprock outcrop 15 km to the northeast of the planned injection site (Fig. 2) and, as such, no conventional structural trap is present (Bælum et al., 2012). Subhydrostatic pressure gradients in the reservoir (discussed herein), however, suggest that the reservoir is not in communication with the surface.

Analysis of outcrop and core data, along with water injection tests, have shown the reservoir to be tight, with low matrix permeability (<2 mD) and moderate porosity (up to 20%; Braathen et al., 2012; Farokhpoor et al., 2013, 2014; Mørk, 2013; Magnabosco et al., 2014; Senger et al., 2015a). The tight nature of the reservoir relates to deep burial that occurred during the development of the Palaeogene West Spitsbergen Fold-and-Thrust Belt (WSFTB; Bergh et al., 1997; Braathen et al., 1999).

The reservoir is further complicated by the occurrence of Early Cretaceous igneous intrusions (Bælum et al., 2012; Corfu et al., 2013; Senger et al., 2014a), largescale low-angle thrusts and subseismic high-angle extensional faults related to the WSFTB (Ogata et al., 2014; Mulrooney & Braathen, 2015). Despite these heterogeneities, water injection tests show an average flow capacity of 61 mD m$^{-1}$ in the Wilhelmsøya Subgroup (Larsen, 2010, 2012), which is envisaged to be primarily a function of matrix permeability, with the natural fracture network providing efficient fluid migration pathways from less to more promising reservoir zones. The underlying De Geerdalen Formation shows an average flow capacity of 45 mD m$^{-1}$ in the lowermost part of the reservoir which is envisaged to be primarily a function of the natural fracture network (Larsen, 2010, 2012; Ogata et al., 2012, 2014).

Natural gas was encountered at several stratigraphic intervals during the drilling campaign (Senger et al., 2016; Huq et al., 2017; Ohm et al., 2017). Thermogenic gas and oil-stained sandstones were encountered in the De Geerdalen Formation (DH4; Fig. 2) and envisaged to have been generated in the Middle Triassic Botnehei Formation (Abay et al., 2017) located approx. 400 m below the maximum drilled depth. Thermogenic gas from a 650–703 m interval in well DH5R (Fig. 2) which spans the Wilhelmsøya Subgroup and the lowermost part of the Agardhfjellet Formation Subgroup, was possibly sourced from the Agardhfjellet Formation (Ohm et al., in prep.), analogues to the Hekkingen Formation which is a prolific source rock in the SW Barents Sea.

As previously stated, a key finding from the pilot project is that subhydrostatic pressures are present in the storage formation interval. In addition, a slight overpressure is encountered in a shallow aquifer above the caprock (Braathen et al., 2012). Vertical pressure compartmentalisation (Braathen et al., 2012) illustrates the good sealing properties of the caprock, while lateral pressure compartmentalisation (Larsen, 2010, 2012) indicates the presence of baffles or seals to fluid flow. Moreover, this observation is supported by water injection tests in DH7A and interference monitoring in DH5R (UNIS CO2 Lab AS, 2015) described herein. Communication between the two wells (situated 94 metres apart) during active injection was negligible, further supporting the presence of lateral flow barriers. The abnormal pressures encountered in the storage formation interval attest to a tight impermeable underburden consistent with the Bravaisberget Formation which forms the uppermost part of the Sassendalen Group.

This contribution presents evidence of fluid flow barriers affecting the target reservoir unit and details structural heterogeneities that may compartmentalise the potential storage unit.

Geological setting

The Svalbard archipelago is part of the emergent, uplifted northwest Barents shelf (Fig. 1), an otherwise submerged portion of Eurasian continental crust. The early development of the area is dominated by the Silurian–Devonian Scandinavian phase of the Caledonian orogeny (McKerrow et al., 2000), as well as earlier tectonic events, e.g., the Svecofennian and Tornalian orogenies (Nironen, 1997; Ritzmann & Faleide, 2007; Faleide et al., 2008; Marello et al., 2010; Andresen et al., 2014). The oldest strata preserved on Svalbard comprise the Precambrian to Early Palaeozoic Hecla Hoek (Harland et al., 1966; Ohta, 1982) and form the region’s metamorphic basement.

Following the Caledonian orogeny, uplifted areas were subject to subaerial erosion, with deposition of Old Red Sandstone taking place in supradetachment basins throughout the Devonian to Early Carboniferous (Faleide et al., 1993; Osmundsen et al., 1998; Braathen et al., 2000, 2018; Osmundsen & Andersen, 2001; Souche et
This crustal-scale extension exploited north–south trending Caledonian lineaments and was followed by, or linked to, a phase of east–west crustal shortening during the latest Devonian to earliest Carboniferous Svalbardian–Ellesmerian deformation event (McCann, 2000; Piepjohn, 2000; Braathen et al., 2018). Narrow rift grabens, again reactivating Caledonian lineaments, formed in the Middle–Late Carboniferous, e.g., the Billefjorden Fault Zone (Braathen et al., 2011; Maher & Braathen, 2011) and were filled by a mixture of siliciclastic and evaporite deposits.

Extensional activity along lineaments slowed in the Late Carboniferous–Permian (Høy & Lundschieh, 2011), and Permian carbonates and evaporites were deposited as part of a stable platform succession. Later Permian deposits record a shift from warm-water carbonates to cold-water, siliceous deposits (Steel & Worsley, 1984; Stemmerik & Håkansson, 1989; Stemmerik & Worsley, 1989; Nilsson et al., 1996; Worsley, 2008; Smelror, 2009).

The Carboniferous–Triassic Uralian orogeny in the east of the Barents shelf (Rickard & Belbin, 1980; Ziegler, 1988; Gee et al., 2006; Pease, 2011) and associated uplift provided a prominent sediment source for the Barents shelf. Large deltaic systems prograded from the southeast, and across the Barents Shelf and built out over earlier Triassic deep-marine deposits (Riis et al., 2008; Glørstad-Clark et al., 2010; Høy & Lundschieh, 2011; Anell et al., 2014; Klausen et al., 2015).

The targeted reservoir section (Fig. 2) envisaged for the Longyearbyen CO2 Lab belongs to the Upper Triassic to Middle Jurassic Kapp Toscana Group, which comprises the sandstone-dominated De Geerdalen Formation and the overlying Wilhelmøya Subgroup (i.e., the Knorringfjellet Formation; Worsley, 1973, 2008; Knarud, 1980; Mørk et al., 1982; Harland & Geddes, 1997; Mørk & Worsley, 2006; Mørk, 2013; Rismyhr et al., 2019). The De Geerdalen Formation represents paralic deposition while the Wilhelmøya Subgroup was deposited in a deltaic, tide-dominated shoreline, and inner-shelf environments. Herein, the Wilhelmøya Subgroup is divided into three sequences after Rismyhr et al. (2019). Sequence 1 is broadly comparable to the Tverbebben Member and includes the Slottet Bed, sequence 2 is comparable to the Teistberget Member, while sequence 3 is comparable to the Brentskardhaugen Bed.

The reservoir units are overlain by a 450 m-thick, shale-dominated succession belonging to the Middle Jurassic to Lower Cretaceous Agardhfjellet Formation (Koevoets et al., 2016, 2019) and the Early Cretaceous Rutikjjellet Formation (Dypvik et al., 1991; Grundvåg et al., in prep.), which represents the regional caprock and seal for the targeted storage formation (Fig. 2). Overlying the reservoir-seal succession, the overburden continues with the 60 m-thick fluvial to deltaic deposits of the Barremian Helvetiafjellet Formation and 60 m-thick, Aptian to Albian, shallow-marine to inner-shelf deposits belonging to the Carolinefjellet Formation (Grundvåg et al., in prep.). The transition between the two formations is marked by an erosional unconformity related to crustal updoming driven by the HALIP event (Maher, 2001; Midtkandal et al., 2007; Neibert et al., 2011; Minakovsky et al., 2012; Corfu et al., 2013; Senger et al., 2014a; Polteau et al., 2016). Mafic igneous intrusions (approx. 122.2–124.5 Ma) associated with the HALIP locally (Fig. 2) played an important role in terms of diagenesis and perhaps compartmentalisation of the Mesozoic sedimentary succession (Corfu et al., 2013; Senger et al., 2013, 2014a).

In the latest Cretaceous, a dextral transform fault zone known as the De Geer Zone (i.e., the palaeo-Hornsund Fault Zone) developed between Greenland and the western Barents Sea (Talwani & Eldholm, 1977; Gaina et al., 2009). Initial stages of break-up and sea-floor spreading were accompanied by a phase of Palaeogene transpression, which led to the development of the West Spitsbergen Fold-and-Thrust Belt (WSFTB; Braathen & Bergh, 1995; Bergh et al., 1997; Braathen et al., 1999; Leever et al., 2011). The WSFTB is characterised by a western thick-skinned province where structures are basement-involved, and a thin-skinned fold-thrust belt with three distinct detachment levels along weak evaporite and shale intervals, two of which bound the Longyearbyen CO2 reservoir (Fig. 2; Bergh et al., 1997; Braathen et al., 1999; Blinova et al., 2012). In addition, small-scale extensional structures (Fig. 2) seen to offset the storage formation (Lord, 2013; Ogata et al., 2014; Roy et al., 2014; Mulrooney & Braathen, 2015) have been related to differential tectonic loading during the evolution of the WSFTB crustal flexure. This flexure was induced by orogenic loading of the WSFTB which created the Palaeogene Central Tertiary Basin (CTB), a foreland basin accommodating sediments from the
uplifted western hinterland and infilled by Palaeogene marine to continental facies (Steel & Worsley, 1984; Braathen et al., 1999; Helland-Hansen, 2010; Anell et al., 2014). The Longyearbyen CO₂ reservoir experienced approximately 3.5 km of uplift from the Oligocene, and mostly during the Late Miocene, Pliocene and Quaternary when Svalbard and the entire Barents Sea region were subject to significant glacial isostatic rebound and erosion (Dimakis et al., 1998; Bohloli et al., 2014). The development of severe underpressure within the study area is linked to the Cenozoic uplift and repeated glaciations (e.g., Wangen et al., 2016), though the extent of this and the main drivers are not fully understood.

Data and methods

The study presented herein utilised core and wireline log data from three closely spaced wells in Adventdalen (DH4, DH5R, DH7A) and an additional well 7 km to the northwest (DH2; Fig. 2), which fully penetrated the Wilhelmøya Subgroup. In addition, field studies were conducted 15 kilometres northwest of the Adventdalen well site (Drill site 2; Fig. 2) where the subgroup crops out. A summary of the multidisciplined approach to appraising the target reservoir is given in Table 1.

Core samples from boreholes and outcrops were collected for pore network characterisation (Fig. 3), and analysed using high-resolution X-ray computed tomography (micro-CT; Cnudde & Boone, 2013; Van Stappen et al., 2014). In order to fully characterise the pore network, micro-CT was then combined with other techniques, notably Mercury Intrusion Porosimetry (MIP; Cnudde et al., 2009) and Helium-porosimetry (HeP; Van Stappen et al., 2014). The analysis focused on the 3D pore structure and the presence of microcracks (Van Stappen et al., 2014). A more complete description of this methodology is described in Appendix 1.

High- and low-pressure water injection tests (Larsen, 2010, 2012; Senger et al., 2015a) were performed targeting the Wilhelmøya Subgroup (Fig. 4) to obtain permeability information and to test lateral communication between wells.

Effects of diagenesis and quartz cement distribution within the target reservoir were discerned by optical microscopy of 55 polished thin-sections, supplemented by scanning electron microscopy back-scattered electron image and energy dispersive analysis for mineral identification and microstructural interpretation (Mørk, 2013).

Structural analysis of the outcropping reservoir section was performed to improve the control of differential fracturing of litho-mechanical units as well as meso-scale (>50 cm displacement, subseismic) faults and igneous intrusions on fluid flow and reservoir compartmentalisation. Structural discontinuity mapping was conducted on the target succession outcrops where scan-lines (i.e., the line-intersection method; Singhal & Gupta, 2010) have been measured to provide horizontal fracture frequency plots along individual intervals, as well as fracture orientation, not available from the unorientated drillcores. Discontinuity classification is based on Schultz & Fossen (2008). In addition, meso-scale fault systems and associated damage zones were identified and mapped in terms of breccia series and gouge thickness/composition (Ogata et al., 2014; Mulrooney & Braathen, 2015). Fault architecture was mapped using virtual outcrop models created using photogrammetry, e.g., Buckley et al. (2016).

Clay gouge from 5 normal faults affecting the reservoir were sampled from outcrops in Konusdalen (Fig. 2) and subject to X-ray diffraction (XRD) mineralogical composition analyses. A background sample from a shale-rich bed within the Wilhelmøya Subgroup and outside of the fault damage zones was also analysed. The second part of the analysis attempted to model clay fraction aggregates. Analysis was run using a D8 advanced Bruker diffractometer equipped with Copper Ka radiation (40 kV and 40 mA) and LynxEye detector (expanded upon in Appendix 2).

Injection and fluid flow properties of the Wilhelmøya Subgroup were investigated by conducting water injection tests (Fig. 4) in DH7A (Test 1) and DH5R (Test 2). High- and low-pressure water injection tests (Larsen, 2010, 2012) were performed (Fig. 4) to obtain permeability information and to test lateral communication between wells. The first (Test 1) consisted of an active injection and falloff sequence in DH7A over a 9-day period starting Sept. 6, 2012, followed by an extended falloff for 310 days ending July 21, 2013, with possible pressure interference monitored in DH5R, 94 m away. The test sequence was run for 4 hours with injection rates of up to 368 m³/d followed by 22.6 hours of shut-in, for 0.36 hours with injection rates of up to 1363 m³/d followed by 42 hours of shut-in, for 5.8 hours with injection rates of up to 1373 m³/d followed by 71.4 hours of shut-in, and finally 72.2 hours with injection rates of up to 476 m³/d (451 m³/d the last 13.5 hours) followed by an extended falloff interval that lasted 7432 hours (approx. 10 months). The second injection and
The fall-off test (Test 2) was conducted in DHSR (Larsen, 2012; UNIS CO2 lab AS, 2015) with 2 days of injection starting on Aug. 11, 2014 and followed by an 848 hour-long fall-off period ending Sept. 17, 2014. The injection rate was kept stable at approx. 310 m³/d for 40 hours, after which the rate was gradually increased to 325 m³/d over an 8-hour period.

Table 1. Summary of Longyearbyen CO2 lab studies, methods and datasets.

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Aims</th>
<th>Data sets</th>
<th>Resolution (m)</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well appraisal</td>
<td>Permeability information/test lateral communication</td>
<td>Test results from 3 wells</td>
<td>~100 m</td>
<td>Larsen (2010, 2012)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Aims</th>
<th>Data sets</th>
<th>Resolution (m)</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyses</td>
<td>Aims</td>
<td>Data sets</td>
<td>Resolution (m)</td>
<td>Key references</td>
</tr>
<tr>
<td>X-ray computed tomography (Micro-CT)</td>
<td>Quantify fracture orientation, length and maximum aperture</td>
<td>12 Core plugs/12 outcrop plugs</td>
<td>≥2.8 µm</td>
<td>Cnudde & Boone (2013); Van Stappen et al. (2014)</td>
</tr>
<tr>
<td>Image reconstruction (Octopus software suite)</td>
<td>3D pore structure and (micro-) crack analysis</td>
<td>12 Core plugs/12 outcrop plugs</td>
<td>~1 µm</td>
<td>Van Stappen et al. (2014)</td>
</tr>
<tr>
<td>Mercury Intrusion Porosimetry (MIP)</td>
<td>Refinement of pore network characterisation</td>
<td>12 Core plugs/12 outcrop plugs</td>
<td>~1 µm</td>
<td>Cnudde et al. (2009)</td>
</tr>
<tr>
<td>Helium-porosimetry (HeP)</td>
<td>Refinement of pore network characterisation</td>
<td>12 Core plugs/12 outcrop plugs</td>
<td>~1 µm</td>
<td>Van Stappen et al. (2014)</td>
</tr>
<tr>
<td>optical microscopy</td>
<td>Effects of Diagenesis and quartz cement distribution</td>
<td>55 polished thin sections</td>
<td>~0.5 mm</td>
<td>Mørk (2013)</td>
</tr>
<tr>
<td>scanning electron microscopy / energy dispersive analysis</td>
<td>mineral identification and microstructural interpretation</td>
<td>Core samples</td>
<td>~1 µm</td>
<td>Mørk (2013)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Aims</th>
<th>Data sets</th>
<th>Resolution (m)</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meso-scale fault systems</td>
<td>Determine fault attitudes, frequency, style</td>
<td>Outcrops, Virtual outcrop models</td>
<td>cm - 100 m</td>
<td>Ogata et al. (2014); Mulrooney & Braathen (2015)</td>
</tr>
<tr>
<td>Fault gouge analysis</td>
<td>Determine clay mineral composition and clay fractions</td>
<td>6 outcrop samples (locations in Fig. 6)</td>
<td>~1 µm</td>
<td>Mulrooney et al. (this volume)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Aims</th>
<th>Data sets</th>
<th>Resolution (m)</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural logging of cores</td>
<td>Determine physical characteristics and frequency distribution</td>
<td>4500 m of drill cores/Optical televiwer</td>
<td>~1 cm</td>
<td>Ogata et al. (2012)</td>
</tr>
<tr>
<td>Line-intersection method, outcrops</td>
<td>Litho-mechanical control of fracture network</td>
<td>105 scan-lines, 7672 measurements</td>
<td>~1 cm</td>
<td>Ogata et al. (2014)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Aims</th>
<th>Data sets</th>
<th>Resolution (m)</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional igneous study</td>
<td>Determine geometries of igneous intrusions</td>
<td>Seismic, magnetic, LIDAR and borehole data</td>
<td>≥10 m</td>
<td>Senger et al. (2013)</td>
</tr>
<tr>
<td>Igneous affects on reservoir</td>
<td>Impact of igneous intrusions on reservoir properties</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Aims</th>
<th>Data sets</th>
<th>Resolution (m)</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedimentological study</td>
<td>Facies analysis, seq. strat, palynology of the reservoir</td>
<td>4 drill cores/outcrop logs</td>
<td>~1 cm</td>
<td>Rismyhr et al. (this volume)</td>
</tr>
</tbody>
</table>
Results

Flow and shut-in tests

Test 1
Injection and falloff results from DH7A are shown in Fig. 5, with a log-log diagnostic plot in Fig. 5A of test data from the extended falloff (markers) and data from an analytical model (curves) with a uniform-flux fracture (i.e., uniform inflow over the entire fracture area) with half-length $x_f = 83$ m orientated parallel to a flow barrier 58 m from the well, and a test overview plot in Fig. 5B of the entire data set from DH7A (markers) along with output from the analytical model (curve). The green markers in Fig. 5A represent pressure changes after shut-in, while the red markers represent semi-log derivatives after shut-in. The derivatives are used to identify the flow response, with the 45 degree climb between 0.4 and 100 hours into the falloff typical for flow along a fracture enhanced by boundary effects from the nearby flow barrier, and the flat part indicated at the end typical for radial flow (in this case from a half-circle due to the flow barrier on one side). Apart from the first half hour, the match of test data and model output is excellent. Given a reservoir thickness of approx. 24 m (determined from outcrops; Ogata et al., 2014), a permeability of 2.55 md is obtained from a flow capacity of 61.2 md·m referred to above.

The results (Fig. 5) of the first test show very limited to no pressure communication between DH5R and DH7A, which implies that there must be flow barriers in the subsurface. In addition, test results for DH7A are consistent with injection-related hydraulic fracturing (i.e., DH7A is a fractured well) and the presence of a nearby flow barrier. Since it is often difficult to identify radial flow data from fractured wells, it can be challenging to obtain good estimates of the flow capacity (i.e., the k_h product). However, with almost 8000 hours of shut-in data from DH7A, a flow capacity of 61.2 md·m can be determined with a high degree of confidence. Results are less certain for determining the fracture half-length (x_f in Fig. 5) and the distance to the flow barrier, but values outside the range 70–100 m for the half-length and 50–60 m for the distance are not likely. These uncertainties are related to unknown flow properties within the induced fracture.

In the analysis, the flow barrier has been modelled as fully sealing, but the DH7A data are also consistent with some minor leakage across the boundary, e.g., with a multiplier lower than 0.01. A multiplier in this range is also consistent with the lack of observable interference in
Figure 4. Well design and flow chart for the fluid flow tests. (A) Schematic depiction of the water flow test conducted on the Wilhelmøya Subgroup with well DH7A as the injector and DH5R as the observation well. The down-hole pressure gauge in DH5R was placed at 645 m. Abbreviations: HWT – Well into bedrock, HQ – 66 mm casing, NQ – 56 mm casing, BQ – 46 mm casing, ID – Internal diameter. Blue stippling is cement. (B) Technical diagram for the water test provided by Baker Hughes.
DH7A results (Fig. 5A). The uniform-flux fracture has a half-length of 83 m, with a permeability of 2.55 mD and a no-flow boundary at 58 m. These results are consistent with the reservoir boundaries (e.g., impermeable fractures) at 22 and 138 m, permeability of 1.9 mD, and the presence of no-flow boundaries at 58 m and initial pressure of 24.2 bar.

In contrast to the DH7A data from the first test, the extended falloff from DH5R is difficult to match with a uniform-flux fracture and a sealing boundary. Although the data, there is some added uncertainty about the pressure response at the end of the injection period. In order to match the first part of the injection data, a shorter uniform-flux fracture length is only consistent with the pressure response at the end of the injection period. This is evident in the history plot shown in Fig. 5D, where the uniform-flux fracture length is only consistent with the pressure response at the end of the injection period. In order to match the first part of the injection data, a shorter uniform-flux fracture would be needed. The same can be observed in the DH7A data over a shorter time scale, but not evident in Fig. 5B with almost 1 year of data. Although fracture propagation is evident in both datasets, a key difference is that a much larger volume was injected in DH5R, especially with unstable and noisy data in DH5R after well operations with falling water level coupled with variable gas influx in DH5R (Huq et al., 2017). Poor reference data, as in this case, require a strong response to be clearly identifiable as interference, as with no barriers or barriers with only moderate flow restrictions. Pressure data were monitored for almost two years in DH5R, until May 5, 2014, but beyond the first few weeks the response was clearly dominated by gas influx.

A key observation from the DH7A data is that the Wilhelmøya Subgroup is under-pressured by at least 35 bar with reference to standard sea level.

Test 2
In contrast to the DH7A data from the first test, the extended falloff from DH5R is difficult to match with a single model. The log-log diagnostic plot in Fig. 5C shows a chosen match of falloff data from DH5R with a fractured well between parallel no-flow boundaries. Although the model does not match early data, a good match is obtained for the last 830 hours of the falloff. The results listed in the plot, with a uniform-flux fracture with a half-length of 93 m, permeability of 1.9 mD, and the presence of no-flow boundaries (e.g., impermeable fractures) at 22 and 138 m from the well, are based on an assumed reservoir thickness of 30 m. These results are consistent with the DH7A results (Fig. 5A). The uniform-flux fracture has also been oriented parallel to the boundaries in the model. The reason for this ‘channel-like’ model used for DH5R is the upturn seen in derivatives (the lower data) after about 200 hours. The poor match of the early data shown in Fig. 5C is likely caused by a lack of fracture stabilisation during the single injection period prior to the falloff. This is evident in the history plot shown in Fig. 5D, where the uniform-flux fracture length is only consistent with the pressure response at the end of the injection period. In order to match the first part of the injection data, a shorter uniform-flux fracture would be needed. The same can be observed in the DH7A data over a shorter time scale, but not evident in Fig. 5B with almost 1 year of data. Although fracture propagation is evident in both datasets, a key difference is that a much larger volume was injected in DH7A (test 1) compared with DH5R (test 2) prior to the long shut-ins.

It is important to note that the initial pressure of 24.2 bar at a depth of 645 m listed in Fig. 5D corresponds to the value needed in the analytical model to match the test data from DH5R. Since the model does not fully match the data, there is some added uncertainty about the formation pressure in DH5R. Since the recorded pressure was 27.5 bar and rising prior to the start of injection, it is most likely that the initial pressures were the same at the two well locations, e.g., 29.9 bar at 670 m depth, and hence similarly under-pressured.
Faults in the target successions

The presence of subsurface, potentially baffling faults within the target reservoir is consistent with outcrop and seismic observations throughout central Spitsbergen. Normal faults are observed along the coast of western Spitsbergen, e.g., the Forlandsundet Graben (Steel et al., 1985; Gabrielsen, 1992), as well as offshore (Eiken & Austegard, 1987). Similar structures are described on the eastern flank of Bore Mountain, central Spitsbergen and within the Svea mine (locations shown in Fig. 1; Goss, 2013). In the latter case, thrusts related to the WSFTB (Bergh et al., 1997; Braathen et al., 1999) form the sole to the extensional faults where both structures are envisaged to have formed contemporaneously.

Meso-scale faults, defined herein as faults that have >50 cm displacement, are subseismic (Ogata et al., 2012, 2014; Roy et al., 2014; Mulrooney & Braathen, 2015) and affect the reservoir successions in a N–S-trending river section 15 kilometres northeast of the drill sites. The Konusdalen fault system, illustrated in Fig. 6, affects the uppermost part of the De Geerdalen Formation (Ipsfjord Member) and the entire Wilhelmøya Subgroup. Here, these faults exhibit strikes of NE–SW to ENE–WSW, and dip approximately 65° towards the NW to NNW. Antithetic faults are also present, and dip approximately 70° towards the SE to SSE. The Konusdalen outcrop consists of 3 rotated fault blocks ranging from 2 to 6 metres in width, and is characterised by a 2 m-wide graben and an 11 m-wide horst. Five faults and associated splays are identified: the K1, K3 and K5 faults consist of several synthetic and antithetic segments, some discontinuous. The majority of fault displacement is accommodated by narrow zones of penetrative strain, i.e., fault cores. In one case, K3, an example of down-section bifurcation is observed (Fig. 6B). Fault zones K2 and K5, in contrast, are defined by single discrete slip surfaces. Maximum displacement on individual faults is approximately 3 m.

Each fault core is surrounded by a damage zone, i.e., a volume of deformed wall rocks around a fault core or slip surface that results from the initiation, propagation, interaction and build-up of slip along faults (e.g., Cowie & Scholz, 1992; McGrath & Davison, 1995). The fault core and damage zones in Konusdalen can be described in terms of breccia series, fracture frequency and gouge presence following Braathen et al. (2004, 2009). Country-rock brecciation (protobreccia, breccias or ultrabreccia) and gouge are displayed in Fig. 6D. Away from zones of brecciation and fault induced fracturing, background fracturing (Fig. 6C) is observed. Deformation varies between fault zones; for example, K1 is characterised by a discrete gouge-cored fault zone surrounded by relatively undeformed country rock. In contrast, faults K3a and K4 show undulating zones of coarse-grained gouge and breccias spanning a 25 cm envelope around the fault’s core. Fault zones K3 and K5 are characterised by thick, but undulating (max. 75 and 22 cm, respectively) zones of variably brecciated rock. In addition, lenses comprising lesser localised brecciation are in places rafted within more mature brecciated fault rock, and envisaged to have been broken off from the fault-core walls during slip events. The damage zones shown in Fig. 6 range between 1 and 4.5 m width for individual faults. The presence of undulating clay gouge in fault cores is likely derived from the low N/G ratio (25–50%) host-rock succession. The gouge forms clay abrasion membranes of variable thicknesses, but no true development of shale-smear is present.

Results of X-Ray diffraction (XRD) analyses of gouge sampled from five fault cores (K1, K2, K3, K4 and K5) are summarised in Table 2. The gouge is not completely formed of clay minerals, containing between 23 and 43% quartz. The cores are typically characterised by gouge containing (in descending abundance) quartz, muscovite/illite, plagioclase, kaolinite and chlorite. Some fault cores also contain small volumes of microcline, siderite, pyrite and apatite. The composition of the gouge is broadly similar to that of shale- and claystone-rich beds of the Wilhelmøya Subgroup (sequence 1). Clay fraction modelling, in addition to chlorite-smectite (C–S) and mixed layer Illite-smectite (I–S) ratios are shown in Table 3. The increased I/S ratio in the fault gouges in comparison to the host rock, apart from K3, may be indicative of shear-stress-induced dehydration, which makes smectite highly reactive and prone to transform into illite (Casciello et al., 2004). The progressive transformation of smectite to illite via mixed-layer illite/smectite (I/S) correlates with changes in temperature due to burial depth, although the function curve for this process is very coarse (Kubler, 1967; Hower et al., 1976; Boles & Franks, 1979; Pollastro, 1993; Årkai et al., 2002). Other factors, such as geotectonic setting, period of heating, rock composition, porosity, fluid circulation, and K+ ion availability, can also influence these parameters (Frey, 1987; Merriman, 2005; Delissanti & Valdré, 2008; Merriman & Peacor, 2009; Delissanti et al., 2010). Assuming a hyperthermal gradient of 50°C/km (Marshall et al., 2015) owing to the presence of dolerite intrusions (Senger et al., 2014a), and burial to approx. 3.7 km (see above), the target reservoir experienced temperatures of approximately 185°C (Marshall et al., 2015). This high temperature is supported by observations of pervasive quartz cementation (Mørk, 2013).

Faults affecting the lower part of the Agardhfjellet Formation are observed in a valley section 3 km to the east of Konusdalen (Fig. 7; Ogata et al., 2014; Mulrooney & Braathen, 2015) in Criocerasdalen, and in an unnamed valley 1 km west of Criocerasdalen (location in Fig. 2). These faults are, however, not hard linked to the aforementioned Konusdalen system, i.e., they tip out towards the base of the Agardhfjellet Formation. Correspondingly, the Konusdalen faults tip out up-section approx. 10 m below the interface between the Wilhelmøya Subgroup and the Agardhfjellet Formation.
In addition, faults affecting both successions show some notable geometrical contrasts, i.e., spacing and dip (Fig. 8). Konusdalen faults are closely spaced (1–10 m spacing) and show steep dips in the range of 65–85°, whereas Criocerasdalen faults display spacing in the range of 25 and 45 m, low-angle 25° dipping synthetic faults and steeper, 60° dipping, antithetic faults. Moreover, the Criocerasdalen faults strike approximately 10° counter-clockwise of the underlying systems.

The varying styles of faulting affecting the caprock and reservoir sections along with similar discrepancies in fracture trends observed by Ogata et al. (2014) are likely caused by vertical geomechanical variation in the stratigraphic succession, not least controlled by a notable transition from the heterolithic Wilhelmøya Subgroup into the shale- and claystone-dominated Agardhfjellet Formation. The transition also stratigraphically correlates to a variation in fracture pressures identified in well tests (Bohloli et al., 2014).

Natural fracture systems

Open natural fractures (unrelated to injection or drilling operations) within the Wilhelmøya Subgroup have been shown to contribute to permeability, fluid injectivity and storage capacity. Fractures are identified in both outcrop and in drillcores (Fig. 9; e.g., Ogata et al., 2012, 2014), and their genesis is primarily attributed to Palaeogene transpression during evolution of the WSFTB and subsequent uplift and unroofing. Locally, enhanced fracturing occurs in damage zones of the Konusdalen fault system as described above and in the vicinity of igneous intrusions (Senger et al., 2014a, b). Due to the low matrix permeability, it is critical to understand the nature of the fracture network from both field and injection data to accurately predict the likely CO₂ distribution in the subsurface. In this section, we outline the fracture heterogeneities at various scales (from micro-CT to meso-scale faults) and discuss their significance with respect to dynamic pressure data obtained from the boreholes.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Illite (R1)</th>
<th>Chlorite (R1)</th>
<th>Kaolinite (R0)</th>
<th>Chlorite-Smectite (R0)</th>
<th>mixed layer Illite-smectite (R0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>49.1</td>
<td>1.0</td>
<td>24.8</td>
<td>0.7</td>
<td>24.3</td>
</tr>
<tr>
<td>K2</td>
<td>48.7</td>
<td>2.3</td>
<td>25.4</td>
<td>1.0</td>
<td>22.6</td>
</tr>
<tr>
<td>K3</td>
<td>43.0</td>
<td>1.1</td>
<td>36.0</td>
<td>2.2</td>
<td>17.8</td>
</tr>
<tr>
<td>K4</td>
<td>63.7</td>
<td>6.5</td>
<td>5.3</td>
<td>0.4</td>
<td>24.0</td>
</tr>
<tr>
<td>K5</td>
<td>66.1</td>
<td>0.0</td>
<td>7.7</td>
<td>0.9</td>
<td>25.3</td>
</tr>
<tr>
<td>W1</td>
<td>41.3</td>
<td>0.7</td>
<td>37.1</td>
<td>1.8</td>
<td>19.1</td>
</tr>
</tbody>
</table>
Natural fractures in drillcores and outcrops

The significance of natural fractures in contributing to injectivity and fluid flow has been quantified during an open-hole water injection test in the underlying De Geerdalen Formation at 870–970 m in DH4 (Braathen et al., 2012; Ogata et al., 2012; Senger et al., 2015a). Following this test, the calculated permeability exceeded the measured matrix permeability by approximately one order of magnitude, with the enhanced injectivity attributed to an extensive natural fracture network. In the upper part of the reservoir, in the Wilhelmøya Subgroup, the matrix porosity and permeability is significantly higher than in the De Geerdalen Formation (Magnabosco et al., 2014), but the fracture network is nonetheless envisioned to enhance injectivity and provide fluid flow access to the secondary porosity. Furthermore, the fracture network may contribute up to 2.5% of the total storage resource estimate (Senger et al., 2015a).

The natural fracture network has been quantitatively characterised in terms of its density, orientation and relationship to the sedimentary succession (Ogata et al., 2014). Drillcores, wireline logs and outcrop data were integrated to produce a conceptual model involving five litho-structural units (LSU) characterised by intrinsic fracture associations and lithological properties (Fig. 10; Ogata et al., 2014). Over 7500 individual fracture measurements were acquired in the field, primarily to determine the dominant fracture orientations. Two main fracture sets have been identified, namely an ENE–
WSW-trending principal fracture set (parallel to faults discussed above) and a NNW–SSE-trending subordinate fracture set (Fig. 10B). This implies a potential for generating an asymmetric CO₂ plume governed both by the matrix permeability, the fracture permeability and the overall regional tilt of the reservoir. Finally, the fracture orientation analysis (Ogata et al., 2012, 2014) suggests that reservoir sandstones (i.e., LSU C; Fig. 10) will act as preferential vertical fluid migration pathways, while shale-dominated successions (i.e., LSU A; Fig. 10) will preferentially form lateral fluid migration pathways and enhance intraformational baffling.

Micro-CT analysis

Micro-CT analysis offers a way to visualise the pore structure and pore size distribution inside rocks (e.g., Cnudde & Boone, 2013; Van Stappen et al., 2014, 2018). However, since it is limited in resolution, it has to be combined with other techniques such as Mercury Intrusion Porosimetry (MIP). This approach is illustrated in Fig. 11, in which a conglomerate sample of the Toarcian–Bajocian Brentskardhaugen Bed in DH4 (at a depth of 677.15 m) was analysed. The initial He-porosimetry measurements showed a porosity of 15.3%. The sample was scanned at a resolution of 56.6 µm, which allowed a subsample to be chosen in the area of the drillcore with the highest expected porosity. This subsample core was drilled with a diameter of 6 mm, allowing a scanning resolution of 4 µm.

For fracture characterisation, additional image analysis tools were applied complementary to previous studies (Van Stappen et al., 2014). This allowed the fractures within the retrieved samples to be analysed for their maximum aperture, length and relative orientation. Previous observations relating fracture occurrence to competence contrasts in sandstone and clay layers (Ogata et al., 2012, 2014) could be confirmed at the pore scale level (Van Stappen et al., 2014).

A comparison between fractures present in field samples and in the drillcores reveals some variations in fracture characteristics. Micro-CT analysis shows a clear difference in fracture length between the outcrop fractures and those analysed in the drillcores (Van Stappen et al., 2014). Generally, the fractures in the field samples are found throughout the entire diameter of the cylindrical samples and must thus be considered as a minimum length, whereas the length of fractures is limited in core samples to a maximum of 2.1 cm. Fracture apertures, on the other hand, were found to be similar in outcrop and core samples, with most apertures ranging between 123 and 283 µm (Fig. 11). Fracture orientations are predominantly horizontal to subhorizontal (Fig. 11), although these fractures are sometimes connected by a population of vertical fractures (Van Stappen et al., 2014). There is a small discrepancy between the absolute values of the measured fracture apertures for field and drillcore samples (Fig. 11).

Igneous bodies

Early Cretaceous igneous intrusions, U–Pb dated to c. 124.5 Ma, are present throughout Svalbard and especially in central Spitsbergen (e.g., Nejbert et al., 2011; Corfù et al., 2013; Senger et al., 2013, 2014b, 2015b). The mafic intrusions, collectively referred to as the Diabasodden Suite (Dallmann, 1999), are all genetically linked and form part of the High Arctic Large Igneous Province (HALIP; Maher, 2001). The igneous bodies primarily form sills, typically less than 50 m thick but extending over 10 km laterally (Senger et al., 2014a). Subordinate dykes, transgressive sill segments and saucer-shaped
intrusions are also present (Senger et al., 2013). Stratigraphically, the thickest sills are emplaced below the target reservoir as evident from borehole, outcrop and seismic observations (Bælum et al., 2012; Senger et al., 2013). Senger et al. (2014a) reported a 2.28 m-thick sill near the base of the DH4 borehole at 949.71–941.99 m depth with an associated contact metamorphic aureole, while Bælum et al. (2012) interpreted a high-amplitude reflection beneath the base of the DH4 borehole at 972 m as a much thicker sill, analogous to thick sills outcropping in the equivalent exposed stratigraphic interval at Hatten, approximately 18 km northeast of the DH4 borehole (i.e., within the lower De Geerdalen Formation). In addition, the presence of a solitary, thin (approx. 5 m thick) dolerite dyke at Botneheia (see Fig. 2 for location) extending through the entire Kapp Toscana Group into the overlying Agardhfjellet Formation caprock shales, shows that the entire thickness of the target successions is likely to be locally affected by small-scale intrusions. The directionalities of the intrusions, especially where they occur as dykes, shows affinity towards two main trends, northwest–southeast and northeast–southwest. Contact aureoles documented by Senger et al. (2014a), and credited to heat conduction, show that a distance of up to 195% of the sill thickness has been geochemically and mechanically perturbed. To the east, on the island of Wilhelmøya, Haile et al. (2018) have credited hydrothermal circulation for the hydrothermal alteration of the reservoir succession a distance of over 500% of the thickness of sills. In places, this diagenesis shows reservoir temperatures locally reached approx. 140°C compared with more regional temperatures of 60–70°C driven by burial.

Reservoir characteristics and properties

Net gross; sandstone-shale ratio
A summary diagram showing a synthesis of reservoir properties for the Wilhelmøya Subgroup is shown in Fig. 12 including wireline logs, sedimentary textures and structures, net to gross sandstone-shale ratio, and litho-structural units. A subdivision of reservoir units based on reservoir properties is also presented. Cut-off criteria based on permeability values have not been used in this study due to the importance of fracture-enhanced
permeability within sandstone beds. The net to gross sandstone-shale ratio of the more heterolithic reservoir unit 1 is estimated to vary between 0.3 and 0.6 and with a mean of approximately 0.5. The sequence-stratigraphic correlation in Fig. 12B indicates that reservoir unit 2 is laterally discontinuous and becomes truncated and eroded towards the west. In DH4, 5R and 7A, this reservoir zone has a net to gross ratio of 1. Reservoir zone 3 (Brentskardhaugen Bed) also varies in thickness but is characterised by a high net-to-gross ratio throughout the study area.

Porosity and permeability
The estimated burial depths, and more importantly the maximum burial temperature, imply that chemical compaction is the main factor responsible for the moderate porosities and low permeability measured in the Wilhelmøya Subgroup sandstones (Mørk, 2013). Detailed petrographic studies of sandstones from DH4 document considerable diagenetic impacts on the reservoir quality of the Wilhelmøya Subgroup. The sandstone data from DH4 also verify a distinct increase in mineralogical maturity compared to the underlying De Geerdalen Formation. The quartz-rich sandstones of the Wilhelmøya Subgroup also include a notable feldspar content and, as in the underlying De Geerdalen Formation, chert is the common rock fragment. Rounded, accessory grains of tourmaline and zircon support the earlier interpretations of sediment recycling. Variations in clay-mineral contents (up to 15%) in the bioturbated sandstones probably reflect both primary facies variations and diagenesis.

The diagenetic style of the quartz-rich sandstones includes quartz cementation associated with microstylolites, mineral dissolution and precipitation of pore-filling clay minerals, and commonly associated late pyrite and calcite. The chemical compaction resulted in major reductions of sandstone porosity and permeability. Permeability has been further reduced by a persistence of authigenic Fe-chlorite and fibrous illite in the pores, which explains the low matrix permeability values derived by conventional core plug measurements.

The Slottet and Brentskardhaugen beds comprise phosphatic and non-phosphatic conglomerate beds as well as thin sandy interbeds. Thin-section study of the granule fraction and sandy matrix in DH4 shows an abundance of quartz (mono- and polygranular), chert fragments, minor K-feldspar, as well as reworked basinal grains of phosphate, glauconite and coated grains. Diagenesis has resulted in replacement of glauconite by chlorite and illite aggregates, and cementation of clay and phosphate matrix by microcrystalline siderite, whereas...
<table>
<thead>
<tr>
<th>Zone</th>
<th>NTG</th>
<th>φ</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.00</td>
<td>0.17</td>
<td>0.96</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>0.12</td>
<td>0.31</td>
</tr>
<tr>
<td>1</td>
<td>0.53</td>
<td>0.13</td>
<td>0.20</td>
</tr>
<tr>
<td>1.1</td>
<td>1.00</td>
<td>0.14</td>
<td>0.29</td>
</tr>
<tr>
<td>1.2</td>
<td>0.24</td>
<td>0.12</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Sedimentary textures and structures

- **Shaly/massive-laminated**: Dominated by low-angle fractures. Enhanced lateral connectivity.
- **Silty/thin-bedded**: Both low- and high-angle fractures. Diffused/banded vertical connectivity.
- **Sandy/medium-thick bedded**: Dominated by high-angle fractures. Enhanced vertical connectivity.

Age

- Late Carnian–earliest Norian
- Isfjorden Member
- Wilhelmøya Subgroup
- Slottet Bed
- Agardhfjellet Formation
- Oppdalen Member
- Marhøgda Bed
- Brentskard-haugen Bed
- De Geerdalen Formation

De Geerdalen Formation

- Isfjorden Member
- Wilhelmøya Subgroup
- Slottet Bed
- Agardhfjellet Formation
- Oppdalen Member
- Marhøgda Bed
- Brentskard-haugen Bed
- De Geerdalen Formation

Shaly/massive-laminated: Dominated by low-angle fractures. Enhanced lateral connectivity.

Silty/thin-bedded: Both low- and high-angle fractures. Diffused/banded vertical connectivity.

Sandy/medium-thick bedded: Dominated by high-angle fractures. Enhanced vertical connectivity.
quartz cementation is relatively limited and only patchy within the sand-supported conglomerates (Mørk, 2013).

Permeability and porosity measurements from conventional core plug analysis were presented in Farokhpoor et al. (2010, 2013) and discussed in Mørk (2013). Permeability and porosity values have also been correlated with measurements derived from portable miniperm equipment (TinyPerm II; Magnabosco et al., 2014). The porosity and permeability measurements of samples from well DH4 revealed the best reservoir quality with porosities up to 20% and permeability up to 1.8 mD in conglomerates and thin sandstone beds (Fig. 12A) in the Brentskardhaugen Bed. The conglomerates with highest values are characterised by the presence of a sandstone matrix, where quartz cementation is locally reduced due to chlorite coatings. Lower porosities in similar facies is caused by quartz cement. In contrast, the phosphatic conglomerates and sandstones associated with the Slottet and Brentskardhaugen beds are characterised by low porosity and permeability due to siderite- and phosphate-cemented clay matrices (Mørk, 2013).

Reservoir zones

Three reservoir zones which correspond to the sequences defined by Rismyhr et al. (2019) are distinguished in the Wilhelmyeya Subgroup (zones 1–3; Fig. 12B). The best injection and storage potential of the reservoir zones (best porosity and permeabilities) are found in reservoir zone 3, with an NTG ratio essentially equal to 1 and lateral continuity throughout the study area. Porosities of 15–20% (average 17%) and permeabilities of 0.1–1.8 mD (average 0.96 mD) are measured. The presence of clay-mineral coatings have inhibited extensive quartz cementation (Mørk, 2013) thereby preserving the relatively good reservoir properties. The contribution of fractures to reservoir potential must also be considered, and the reservoir zones can be correlated to lithostructural units (LSU) defined by Ogata et al. (2014) which show fracture characteristics as a function of the mechanical properties of the stratigraphy, i.e., LSU A (shaly/massive-laminated) is dominated by low-angle fractures and is observed within mudstone intervals, LSU B (silty/thin-bedded) includes a mix of both low- and high-angle fractures and is represented by thin sandstones, and LSU C (sandy/medium-thick bedded) that includes both low- and high-angle fractures present in medium-bedded sandstones.

Accordingly, reservoir zone 3 is considered to be the best reservoir zone in the Wilhelmyeya Subgroup; however, zones with less favourable properties will contribute more to the storage space of the reservoir given their larger bulk volume. Reservoir zone 3 correlates approximately to LSU C (Fig. 12A; Ogata et al., 2014). Reservoir subzone 1.1 and zone 2 are considered to have moderate reservoir potential with NTG ratios up to 1, porosities of 9–19.6% (average 14%) and 8.7–13.9% (average 12%), and permeabilities of 0–0.73 mD (average 0.29 mD) and 0.05–0.82 mD (average 0.31 mD), respectively. Both zones correlate to LSU C (Fig. 12A; Ogata et al., 2014). Quartz cement is limited in subzone 1.1 due the presence of siderite and phosphate cement. In contrast, reservoir zone 2 contains abundant quartz cement with a patchy distribution reflecting the pre-existing bioturbation pattern (Mørk, 2013). Reservoir subzone 1.1 is laterally continuous throughout the study area, whereas reservoir zone 2 thins both towards the north and west. It also becomes slightly more heterolithic towards the north and is replaced by mudstones towards the west suggesting reduced reservoir potential in these directions. Reservoir subzone 1.2 is considered to have very little or no reservoir potential, consisting mainly of mudstones with a few thin and laterally restricted sandstones (NTG ratio 0.53 in DH–4). The porosities and permeabilities of these sandstones range from 9 to 18.7% and 0 to 0.06 mD, respectively, and the sandstones are extensively quartz cemented (Mørk, 2013). Reservoir subzone 1.2 correlates to LSU A and B (Fig. 12A; Ogata et al., 2014).

Discussion

The well pressure communication tests detailed herein show unequivocal support for the presence of vertical to sub-vertical heterogeneities within the Longyearbyen CO₂ target reservoir that act as baffles to fluid flow between DH5R and DH7A. Seismic imaging (two-dimensional) of the target reservoir intervals to date (Bælum et al., 2012) have failed to resolve the heterogeneities responsible for this lack of pressure communication. In part, this could be explained by resolution limitations attributed to terrestrial seismic imaging of high-velocity rocks. Additionally, the presence of a 100–120 m-thick permafrost zone in Adventdalen (Johansen et al., 2003) likely contributes to imaging issues, (e.g., Matson et al., 2013). Permafrost raises the
velocity of what would otherwise be weakly consolidated Quaternary cover. Natural arctic surface features (e.g., pingos), that represent local bodies of unfrozen sediment create low-velocity perturbations in the surrounding high-velocity permafrost. Abrupt lateral and vertical velocity variations detrimentally affect conventional surface seismic imaging of the reservoir.

In this section, vertical to sub-vertical geological heterogeneities are discussed with regard to how they may act as baffles to fluid flow. Three possible explanations for the observed lack of communication in well pressure communication tests are suggested, 1) Meso-scale normal faults formed during evolution of the WSFTB, 2) Cretaceous dolerite dykes emplaced in the Mesozoic successions during the HALIP event and 3) potential stratigraphic and/or diagenetic induced compartmentalisation. Further, the roll of fractures and impacts of the observed compartmentalisation are discussed with regard to potential CO₂ injection in the subsurface of Svalbard.

Faults as baffles

The widespread occurrence of subsurface baffling faults is consistent with outcrop and seismic observations throughout central Spitsbergen. The normal fault system affecting the reservoir outcrops in Konusdalen is therefore the most likely explanation for the lack of pressure communication between DH7A and DH5R during injection tests. Observations from outcrops (Fig. 6B) show sand-prone facies in the Wilhelmøya Subgroup are variably juxtaposed across faults. In the case of faults K2, K4 and K5, the sand-prone facies are self-separated across single fault planes, i.e., are juxtaposed against shaly-silty facies. These scenarios represent a high fault seal probability (Pₛₛ) of between 0.7 and 1.0 (Færseth, 1996; Færseth et al., 2007). Faults K1 and K3 which contain several slip surfaces show partial across-fault self juxtaposition of sand-prone bodies, i.e., sand on sand contacts may allow for greater fluid communication across these fault zones. These scenarios represent lower Pₛₛ values in the range of 0.3 and 0.6 (Færseth, 1996; Færseth et al., 2007). The faults that are antithetic to K5 show almost complete self juxtaposition of sand-prone facies across single slip surfaces, i.e., low Pₛₛ values in the range of 0.0 and 0.3. For these latter examples with self juxtaposed sand-prone facies, and subsequent lower Pₛₛ values, the consistent presence of clay abrasion membranes composed of between 35% and 65% clay minerals (Table 2) and an associated reduction in pore throat size in the fault rock can produce an effective seal (e.g., Freeman et al., 1998). For net to gross sandstone-shale ratios of 0.3 to 0.6, typical of sequence 1 in the Wilhelmøya Subgroup (Rismyr et al., 2019), calculation of shale-gouge ratios (SGR), i.e., the percentage of shale within a part of the sequence which has moved past a point on the fault surface, is of little benefit given that the values will be very high and our lack of control on the distribution of the faults in the subsurface. For a fault with a throw value of 3 m, SGR will equal 40 to 70% which would typically be interpreted as an effective fault seal (e.g., Knipe, 1992; Freeman et al., 1998).

In reality, however, it is hard to envisage faults of this scale acting as truly sealing structures. The immature nature of the structures (e.g., with throws no larger than 4 m) suggests faults are laterally discontinuous (Fig. 13A inset). Relay zones between adjacent faults may allow localised across-fault fluid transmissibility and subsequent communication between compartments (Walsh & Watterson, 1991; Cartwright et al., 1995; Childs et al., 1995; Meyer et al., 2002; Kristensen et al., 2008). In addition, the undulating nature of the fault gouge may result in gaps, i.e., sites of enhanced fluid transmissibility. The baffling capacity of such faults may be the net effect of a large number of these small structures and/or some contribution from other discontinuities such as igneous bodies or stratigraphic pinchouts. While the faults likely impede flow of injected fluids, Huq et al. (2017) showed that the strontium isotope composition of formation water within the reservoir is uniform, suggesting these faults will not compartmentalise the reservoir on a geological time scale.

Figure 13. Schematic diagrams of the three, subseismic, geological heterogeneities potentially responsible for baffling fluid communication between DH7A (injection well) and DH5R (monitoring well). (A) Small-scale (less than 10 m displacement) faults as identified in the Konusdalen valley section. Faults affecting the reservoir section have considerable sealing capacity owing to the consistent presence of clay abrasion membranes in fault cores. Enhanced fluid flow both along strike and up-dip is also envisaged owing to high-intensity, fault parallel/subparallel fractures within the damage zones and presence of brecciation. Bottom left inlay: Fluid migration pathways may be preserved at relay zones between laterally discontinuous segments (Rotevatn et al., 2007). (B) Thin, less than 1 m-thick dykes as observed in outcrop at Botnheia and Hatten, may feed from a large sill seismicly imaged at approx. 250 m below DH5R and DH7A. Numerous thin intrusions are also encountered within the Wilhelmøya Subgroup in DH4 but are likely sills (Ogata et al., 2014). The baffling capacity of dykes results from contact metamorphism where the reservoir country rock has undergone reductions in porosity and permeability. Similar to the faults, enhanced fluid flow is envisaged both up-dip and along-strike of the intrusion owing to intense, emplacement-related fractures striking parallel/subparallel to the intrusion. Across dyke, fluid transmission may, however, be facilitated by intrusion perpendicular cooling joints. (C) Minor stratigraphic pinch-outs may be facilitated by depositional geometries and diagenetic processes, although they are unlikely to explain the complete lack of communication between DH7A and DH5R.
Possible minor pinchouts
Envisaged fluid migration
Fault damage zone with high frequency fault parallel fractures and brecciated country rock
*possible lateral leakage

Thermal aureole with increased dyke-parallel fracturing and reduction in porosity/permeability
Low angle tectonic and intrusion perpendicular cooling joints

Seismic imaged igneous sill

*not to scale
Sealing caprock

Possible minor pinchouts

The presence of extensional faults in the otherwise compressional regime of the WSFTB is also somewhat anomalous. These normal faults have been related to the latest evolutionary phase of the WSFTB where, in the western hinterland, the elevated fold complex began to collapse resulting in extension along NNE-SSW- to NW-SE-striking normal faults, parallel with the earlier thrusting (Braathen et al., 1995). Ogata et al. (2012) relate local extension towards the foreland, i.e., the Konusdalen and Cricerasdalen faults described herein, to differential tectonic loading and perturbations of the compressional regime along strike of the WSFTB, where extensional faults parallel to the direction of thrusting accommodate thrust transport-normal extension.

The varying styles characterising the faults affecting the caprock and reservoir sections, i.e., the former exhibiting wider spacing, lower angles and anticlockwise strikes to the latter (Fig. 8), are credited to geomechanical variations (see above). Similar discrepancies in fracture trends across this boundary are also observed by Ogata et al. (2014). The transition also correlates stratigraphically with variations in fracture pressures identified in well tests. Mechanical laboratory testing and interpretation of injection test results by Bohloli et al. (2014) conclude that fracture pressure has a higher magnitude and gradient in the overburden than in the reservoir. In addition, in situ stresses in both successions vary, which has been used to speculate on potential fracture opening modes.

Igneous bodies as baffles

In terms of implications on reservoir properties, the emplacement of extensive igneous complexes has the potential to compartmentalise a reservoir by forming baffles/barriers to fluid flow (e.g., Gurba & Weber, 2001; Thomaz Filho et al., 2008), as well as introducing high-permeability fluid-flow pathways (e.g., Smit, 1978; Morel & Wikramaratna, 1982; Babiker & Gudmundsson, 2004; Sankaran et al., 2005; Mége & Rango, 2010; Senger et al., 2017). In some cases, individual intrusions can act as both conduits and baffles (e.g., Stearns, 1942; Rateau et al., 2013). The matrix of crystalline igneous rocks is typically tight, with submilliDarcy permeability and primary porosity commonly less than 0.5–1% (Van Wyk, 1963; Petford, 2003; Sruoga et al., 2004). Permeability within and adjacent to intrusions is dependent on the associated fracture networks typically generated by magma cooling, thermal contraction, magma emplacement and mechanical disturbance of the host rock (Senger et al., 2015b). Fracturing may be locally enhanced along intrusion–host rock interfaces, at dyke–sill junctions, or at the base of curving sills, thereby potentially enhancing permeability associated with these features.

Both Ogata et al. (2014) and Senger et al. (2014a) have shown that emplacement of the Diabasodden Suite caused local geochemical and mechanical perturbations to the sedimentary succession that influenced rock properties, including porosity and permeability. A thermal aureole encompassing the sill encountered towards the base of DH4 is observed and measures 160–195% of the physical sill thickness (Senger et al., 2014a). The aureole is characterised by hard, flint-like bleaching of the country rock where total organic carbon (TOC) decreases systematically towards the intrusion contacts. Increased fracturing within and around the intrusion, including some calcite-filled fractures, compared to background fracturing of the host rock indicates enhanced past fluid flow within and around the intrusions. Many of the fractures within the dolerites are thought to be related to natural cooling phenomena, i.e., cooling joints, while enhanced fracturing in the sedimentary host rock in the vicinity of the intrusion may be related to syn-emplacement mechanical deformation and later localised tectonic deformation due to mechanical contrasts, primarily during Palaeogene transpression. Moreover, incremental structural measurements by Senger et al. (2013) along the 4 km Deltanset to Hatten beach sections (locations in Fig. 2), show considerable localised undulation in bedding attitude with a distinct deviation from the southwesterly regional dip (towards a northeasterly dip). Locally, adjacent to igneous intrusions, beds dip in excess of 20 degrees, likely the result of forced folding (e.g., Jackson et al., 2013) during emplacement of the igneous bodies.

Further evidence for enhanced fluid flow around the intrusions is observed offshore by Senger et al. (2013) and Roy et al. (2014) who document pockmark alignment along dolerite ridges on the seafloor. It is suggested that fluids may be channelled along the base of sills to the surface.

With respect to crediting doleritic sills as the cause of vertical pressure compartments within the target CO₂ successions, Senger et al. (2014a) concede that given the localised nature of intrusion occurrence and their general deeper stratigraphic position than the bulk of the target succession, intrusions are unlikely to be the primary cause of pressure compartmentalisation. The reservoir underpressure is more likely bounded by lateral lithological contacts or possibly the presence of the WSFTB-related décollement located at the Agardhfjellet–Rurikfjellet Formation interface. Small dykes, however, as seen in Botneheia must be present in the vicinity of DH4 in order to feed the thin sills encountered in DH4. These features very likely perturb fluid flow and represent possible seal bypass systems (Cartwright et al., 2007) if the dyke is permeable to fluid flow.

Stratigraphic compartmentalisation

An additional geological scenario that may account for the observed lateral pressure compartmentalisation is the possible presence of stratigraphic compartments,
i.e., a segregation of flow units due to depositional and diagenetic heterogeneities (e.g., Jolley et al., 2010). Stratigraphic heterogeneities comprise many baffling and trapping features in hydrocarbon-bearing basins worldwide, e.g., Devonian reservoirs of the Paradox Basin in southeast Utah (Baars & Stevenson, 1981) and offshore Indonesia, Nigeria and the Gulf of Mexico (Posamentier & Kolla, 2003). Stratigraphic compartmentalisation can result from primary processes, i.e., depositional processes/geoformations and/or diagenesis, i.e., lenses and facies variations in siliciclastic rocks. Secondary processes that can cause stratigraphic compartmentalisation commonly result from some lithological anomaly or variation that developed after deposition and diagenesis of the reservoir rock, and are usually associated with unconformities.

The Norian to Bathonian Wilhelmøya Subgroup was deposited as a highly condensed unit (now approximately 25 m thick) in an open marine-dominated inner-shelf to shore-face environment (Bjerke & Dypvik, 1977; Wierzbowski et al., 1981; Mørk et al., 1982, 1999; Bäckström & Nagy, 1985; Maher et al., 1989; Krajewski, 1990; Krajewski, 2000a, 2000b; Nagy & Berge, 2008; Reolid et al., 2010; Mørk, 2013; Rismyhr et al., 2019). This inferred depositional environment has the potential to introduce stratigraphic closures and pinchouts, i.e., sand bodies may be lenticular in shape up dip and/or along strike of the depositional slope. Stratigraphic control (Rismyhr et al., 2019) on the reservoir is good owing to extensive analyses of the strata where they crop out in the Deltaneset to Hatten area, and is complemented by correlation with four of the Longyearbyen CO2 Lab wells which penetrate the target reservoir (DH2, DH4, DH5R and DH7A).

Despite the Wilhelmøya Subgroup showing the best reservoir properties in the Kapp Toscana Group, Mørk (2013) interpreted a moderate porosity and low permeability (up to 20% and 1.8 mD, respectively) due to deep burial and resultant chemical/physical compaction during the evolution of the WSFTB. In addition, low permeability in quartz-rich sandstones is caused by patchy (re)distribution of quartz cement, pressure solution (e.g., microstylolites) and pore-filling clay minerals. Miniperm measurements (Magnabosco et al., 2014) also showed that sandstones and conglomerates in the Wilhelmøya Subgroup have the best matrix properties for storage of CO2. The two-dimensional seismic coverage of the Longyearbyen CO2 well park (Bælum et al., 2012) shows subtle evidence for the presence of stratigraphic pinchout geometries. Ideally, the identification of such geometries requires three-dimensional seismic to properly delineate their orientation and extent, e.g., Levey et al. (1992). Nevertheless, seismic reflectors representative of Triassic strata (Bælum et al., 2012) show bifurcation of seismic reflectors approximately towards the southeast. Additionally, in outcrop data, a deltaic sandstone in Konusdalen exhibits a lenticular geometry.

With respect to the horizontal compartmentalisation in the Svalbard stratigraphic succession, i.e., the presence of underpressure in the Wilhelmøya Subgroup, Huq et al. (2017), using the strontium isotope composition of formation water, showed there is a distinct barrier to vertical communication within the DeGeerdalen Formation, corresponding to a thin but presumably laterally extensive (>1.5 km) lagoonal mudrock interval (Rismyhr et al., 2019).

The role of fractures

The larger abundance of fractures in outcrop samples in comparison to core samples is credited by Ogata et al. (2012) and Van Stappen et al. (2014, 2018) to the effects of unroofing, and subsequent decompaction that leads to reworking of pre-existing fractures. Furthermore, fracture abundance can be accentuated by the effects of freeze-thaw cycles (Tharp, 1987), i.e., frost wedging, which is caused by the repeated freeze-thaw cycle of water in extreme climates and consistent with the recent high latitudes of the Svalbard archipelago. Longer fracture lengths found in outcrop samples, in comparison with core samples have been credited to the same mechanisms. Fracture apertures are consistent between outcrop and core samples, mostly ranging between 123 and 283 μm, with a further population of microfractures showing apertures of approx. 25 μm being recognised in high-resolution analysis (Van Stappen et al., 2014). These micro-fractures show preferential horizontal orientations as they exploit boundaries between sandstone sections and the interbedded claystones, whereas the larger fractures observed in outcrop are preferentially
tectonically and uplift induced vertical fracturing and jointing, and are envisaged by Ogata et al. (2012, 2014) to facilitate preferential vertical and along-fault fluid migration. The discrepancy between the absolute values of the measured fracture apertures for field and drillcore samples is probably linked to the method used to calculate the maximum aperture (Brabant et al., 2011), i.e., from the micro-CT scans, which is linked to the scan resolution.

Given the severe under pressure of the target formation, the fractures are prone to open when subjected to relatively small pressure increments (Ogata et al., 2012). The primary function of the fracture systems in the target formation is to facilitate permeability. In addition, Senger et al. (2015a) estimated that 2.5% of storage resources are facilitated by the fracture network, which could increase if fractures open during injection.

Fractures induced during well tests (section 4.1) are likely the product of new large dimension fractures as evident by the test data (Fig. 12). It is probable, however, that some of these large-dimension fractures may result from opening and propagation of pre-existing natural fractures where they are preferentially orientated with regard to the injection-related stresses.

Towards injecting CO₂ in the Wilhelmøya Subgroup

The Wilhelmøya Subgroup can be considered an ‘unconventional reservoir’, given that it has low-to-moderate matrix porosity, significant fracture contribution to the pore volume, an abnormal pressure regime, compartmentalisation and a shallow storage depth (affecting the gas phase).

Senger et al. (2015a) presented a first-order static storage capacity assessment of the entire Kapp Toscana Group, with its ‘upper’ zone corresponding to the Wilhelmøya Subgroup. The subgroup exhibits the best reservoir properties of the Kapp Toscana Group but its limited thickness means that the Wilhelmøya Subgroup only contributes with 15.2% of the overall storage capacity. Significant uncertainty in input parameters was accounted for by stochastic Monte Carlo modelling using probabilistic distributions, and a scenario-based approach was implemented based primarily on the area accessible for drilling. Calculated storage capacity was matched to required volumes given 20 years of energy production from the coal-fired power plant (1.2 million tons of CO₂ in total). The deterministic backward volumetric calculation presented by Senger et al. (2015a) indicates that CO₂ would occupy an area of 58 km² if only the Wilhelmøya Subgroup contributed as a reservoir and pressure would be adequate to maintain high-density CO₂. The main uncertainty is related to both the accessible area and the phase of CO₂ (liquid, supercritical vs. gas-phase) which is directly linked to the spatio-temporal evolution of the underpressured compartment.

The present results suggest that significant and subseismic reservoir compartmentalisation is present within the Wilhelmøya Sugroup. As such, accessing adequate storage capacity for CO₂ storage would likely require several wells and perhaps even horizontal wells capable of accessing numerous compartments. Fig. 14 presents a simple model for the position and orientation of heterogeneities responsible for the lack of pressure communication within the Wilhelmøya Subgroup. A subseismic fault, or array of faults, is envisaged to strike ENE–WSW approx. 40–60 m north of DH7A. This orientation is inferred from the faults observed in equivalent outcrops. Additional faults(s) may be located north of DH4.

Subsurface heterogeneities can increase sequestration capacity, i.e., the volume fraction of the subsurface available for CO₂ storage (Hovorka et al., 2004). In homogeneous reservoirs, CO₂ flow paths are controlled by buoyancy (assuming low viscosity of CO₂; see below) and, as such, usually only exploit upper reservoir levels. Heterogeneous rocks force CO₂ to exploit more dispersive flow paths resulting in a larger contact percentage and thereby increasing sequestration capacity. Furthermore, in a heterogeneous reservoir (with horizontal stratification), a larger distribution of stored CO₂ may decrease leakage risk by shortening the continuous column of buoyant gas acting on a capillary seal and inhibiting seal failure.

The phase in which CO₂ exists is a function of pressure and temperature conditions (Goos et al., 2011; Miri et al., 2014). To date, CO₂ storage has mostly been conducted at depths exceeding 800 m (White et al., 2004; Whittaker et al., 2004; Förster et al., 2006; Xue et al., 2006; Daley et al., 2008; Doughty et al., 2008; Vasco et al., 2008; Aradóttir et al., 2011; Eiken et al., 2011), where CO₂ naturally occurs as a supercritical fluid. The temperature gradient in the Longyearbyen target reservoir varies on average between 25 and 50°C/km below the water level at 225 m depth (Elvebakk, 2010; Senger et al., 2013). A maximum temperature of 31.8°C measured at 900 m depth (Elvebakk, 2010) lies just above the CO₂ critical point of 30.97°C (Goos et al., 2011). CO₂ is then likely to be in gas phase in this pilot study and exhibit a low viscosity (Senger et al., 2015a), unless pressure is built up by water injection prior to CO₂ injection. Flow barriers, however, such as faults, increase induced pressures considerably, and may perturb local conditions within the reservoir, leading to pockets of supercritical fluid (Chadwick et al., 2009). It would be of benefit to repeat some well injection tests using CO₂ in different phases; however, owing to the remote location of the pilot study, and the difficulty to source CO₂, this has proven logistically challenging to date (Snorre Olaussen, UNIS CO₂ LAB Project Leader, pers. comm., 2017).
Conclusions

Well pressure tests, core- and outcrop-based analyses of discontinuities within a potential CO₂ storage unit on Svalbard have provided insight into the behaviour of injected fluids.

- The Wilhelmøya Subgroup represents a viable CO₂ storage reservoir with confirmed storage capacity and injectivity.

- The lack of interference during water injection tests in an observation well (DH5R) show limited lateral pressure communication within the reservoir, and the presence of barriers to flow or severe flow restriction within a relatively short distance (40–60 m) to the injector (DH7A). An additional barrier to fluid flow is predicted north of DH5R.

- An extensive natural fracture network contributes both to fluid injectivity and to storage potential. Micro-CT analysis provides reservoir information at the pore scale and allows for a quantification of fracture apertures. Field measurements indicate a potential for enhanced fracture-related fluid flow, primarily in a WSW–ENE trend, with a subordinate NNW–SSE trend.

- Large hydraulic fractures have been induced during the water injection tests, and have been modelled to obtain a satisfactory history match to the injection data. The fractures may be partially credited to pre-existing natural fractures that were preferentially orientated and propagated beyond their existing dimensions.

- Natural fractures contribute significantly to fluid injectivity in the Wilhelmøya Subgroup, although play a more substantial role in the De Geerdalen Formation where matrix porosity and permeability is worse.

- Analysis of petrographic diagenesis and paleo-temperature data shows that chemical compaction had major impact on reservoir quality.

- We propose that an extensional fault system consisting of relatively small (i.e., subseismic) but numerous segments is located between DH5R and DH7A, and oriented WSW–ENE in accordance with analogue fault systems identified in outcrop. Dolerite dykes and stratigraphic closures may also contribute to lateral pressure compartmentalisation.
Acknowledgments. We thank the industry partners in the Longyearbyen CO₂ Lab for their enthusiasm, technical advice and financial contributions: ConocoPhillips, Equinor, Store Norske Spitsbergen Kulkompani, Statkraft, Lundin Norway, Baker Hughes and Leonhard Nilsen & Sonner (http://co2-ccs.unis.no). We are also grateful for the financial support given by the CLIMIT-program administered by the Research Council of Norway and supported by Gassnova. Field campaigns for M.M. and K.S. were supported by Arctic Field Grants from the Svalbard Science Forum. Schlumberger generously provided academic licenses for Petrel to UNIS. Beyene Gimma Haile is thanked for processing samples for clay gouge analysis at the University of Oslo. Inger Laursen and Ola Eiken are thanked for their comments and suggestions which helped improve the clarity of the manuscript. The work is related to the Geological Input to Carbon Storage and Trias North projects (Research Council of Norway award numbers 200006 and 234152, respectively). This is a contribution of the NCCS (RCN# 257579).

References

Appendix 1

Core samples from boreholes and outcrops were collected for pore network characterisation, and analysed using high-resolution X-ray computed tomography (micro-CT; Cnudde & Boone, 2013; Van Stappen et al., 2014). This method allowed spatial resolutions down to 2.8 µm to be achieved. To ensure maximum resolution, subsamples were taken from original core samples, thereby limiting the analysed volume. Image reconstruction and analysis was carried out using the Octopus software suite (Brabant et al., 2011). The analysis focused on the 3D pore structure and the presence of micro-cracks (Van Stappen et al., 2014). However, due to the systematic limitations related to the focal spot size of the X-ray source, the pore space is often not fully represented even in scans with the highest achievable resolution (on the order of 1 µm). This is especially true in very tight sandstones, as in the Wilhelmøya Subgroup, where pores smaller than the resolution limits are present. In order to fully characterise the pore network, micro-CT was combined with other techniques, notably Mercury Intrusion Porosimetry (MIP; Cnudde et al., 2009) and Helium porosimetry (HeP; Van Stappen et al., 2014).

In an initial campaign, 24 sandstone core samples (3 from DH2, 9 from DH4 and 12 from outcrop) were chosen for micro-CT analysis, using a Feinfocus X-ray source and a Varian 2520 V Paxscan panel detector. In combination with He-porosimetry and MIP, the full pore space was evaluated (Van Stappen et al., 2014). Furthermore, micro-CT investigations allowed the quantitative analysis of fracture orientation, length and maximum aperture. In this case, fracture length is calculated as the diameter of the circumscribed sphere around a 3D object, while the maximum fracture aperture is defined as the maximum inscribed sphere fitting in this 3D object (Brabant et al., 2011).

In order to determine fracture apertures in CT images, the fracture is segmented from the overall rock matrix. Next, the fracture is virtually packed with spheres having their central points in the middle of the fracture. Finally, the diameters of these spheres are increased until they reach the fracture walls. As a consequence, the accuracy of fracture aperture measurements is limited to integral multiples of the image resolution. Nonetheless, this method adequately describes fracture aperture distribution.

Appendix 2

Clay gouge from 5 normal faults affecting the reservoir were sampled from outcrops in Konusdalen (Fig. 2) and subject to X-Ray diffraction (XRD) mineralogical composition analyses. A background sample from a shale-rich bed within the Wilhelmøya Subgroup and outside of the fault damage zones was also analysed. Samples were initially treated in bulk to derive cumulative XRD mineralogical composition. Rietveld refinement was then applied, i.e., a technique where the neutron and X-ray diffraction of powder samples results in a pattern characterised by reflections (peaks in intensity) at certain positions. This process was challenging, possibly due to structural complexity. Even though microstrain corrections were applied, it was not possible to remove the effect completely. The second part of the analysis attempted to model clay fraction aggregates. Samples were washed using Milli-Q water, i.e., ultrapure water (Type 1), before clay fraction separation. Sodium bicarbonate was added to the suspension to obtain better dispersion. The grain size fraction (<2 µm) was extracted based on the principles of Stokes’ law and placed on a circular glass sample holder using the Millipore filter transfer method. The uppermost part of the suspended material (clay fraction) was removed or extracted using a siphon. Analysis was run using a D8 advanced Bruker diffractometer equipped with Copper Ka radiation (40 kV and 40 mA) and LynxEye detector. The data were collected from 2 to 65 degrees 2q for air-dried samples and 2–35 degree 2q for ethylene glycol and heat-treated samples. Each sample was subject to four methods of analysis: 1) air drying, 2) Ethylene glycol solvation carried out in a desiccator at 60°C over 12 hours. 3) heating to 350°C and 550°C for an hour to ensure proper identification of mixed-layer clays, and to differentiate between chlorite and kaolinite, respectively. Clay phases in each sample follow the USGS clay mineral identification flow diagram. NEWMODE II was used to quantify the clay fractions, and input data were adjusted until a satisfactory fit of peak positions, shapes and intensities in the entire XRD profile was reached compared to theoretical patterns. This modelling gives a good estimate of the relative abundance of each clay mineral with respect to each sample.